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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
near the critical point in liquids. I. Theoretical results

R. Folk1 and G. Moser2
1Institute for Theoretical Physics, University of Linz, Linz, Austria

2Institute for Physics and Biophysics, University of Salzburg, Salzburg, Austria
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We calculate the hydrodynamic shear and sound mode near the liquid-gas phase transition and predict its
values for different frequencies and temperatures. The dynamical parameters that enter the theoretical expres-
sions are apart from static quantities the background values of the Onsager coefficients for the order parameter
and the transverse momentum current. We find within the field-theoretical renormalization group formalism the
asymptotic scaling functions or the real and imaginary parts of the shear and sound mode in thev-j21 plane.
Our main concern, however, is the calculation of the nonasymptotic expressions describing the crossover from
the analytic background to the asymptotic critial behavior.@S1063-651X~97!05412-3#

PACS number~s!: 62.60.1v, 64.60.Ht, 05.70.Jk, 64.70.Fx
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I. INTRODUCTION

The dynamical critical behavior of pure fluids near t
critical point belongs to the universality class of model H@1#.
The dynamics of this model is described by the order par
eter, which is chosen as the entropy density, and the tr
verse momentum current. Thus this model contains the
conducting mode and the shear mode. However, critical
fects can be seen in other modes too, specifically in
sound mode. Measurements of the critical sound attenua
a(t) at the liquid-gas critical pointTc in the limit of zero
frequency show a divergence atTc , which according to
theory follows the power lawa(t);v2t2r with v the fre-
quency andt5(T2Tc)/Tc the relative temperature distanc
at zero frequency. In the asymptotic region the dynam
critical exponentsr is related to the dynamical critical expo
nent z, the exponentn of the correlation length, and th
exponent of the specific heata by r5zn1a/2. The ratio of
the sound attenuation amplitudes above and belowTc is
given by a universal value@2,3# and is related to the ratio o
the amplitudes of the specific heat at zero frequency. H
ever, at finite frequencies the sound attenuation reach
finite value atTc leading to a critical frequency dependen
at Tc . Thus one has to calculate the attenuation as a func
of both variables, temperature and frequency, in the limit
small wave vectorsk. Since the experimental temperatu
region covers the whole region from background to
asymptotic region in the comparison with experiment a n
asymptotic calculation seems to be appropriate. It is the to
of this paper to present the details of such a calculation
will be seen that the nonasymptotic attenuation at differ
finite frequencies can be predicted without introducing n
universal dynamical parameters apart from those alre
contained in model H~apart from some subleading term
related to the Onsager coefficient of the bulk viscosit!.
Those parameters appearing in the attenuation can be t
from the description of the other modes of the liquid with
model H. In particular they have been found by compar
the shear viscosity with the theoretical predictions of mo
H and have already been used to predict the thermal con
571063-651X/98/57~1!/683~22!/$15.00
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tivity and the sound attenuation@4#. In this way the sound
mode constitutes an important further test of phase transi
theories.

A first successful phenomenological approach has b
developed in@5#. Asymptotic properties at the critical poin
in fluids have been studied in@3# within an extension of the
dynamical equations of model H@1# by renormalization
group theory providing a basis for@5#. A nonasymptotic
theory of the sound propagation has been elaborated for
superfluid transition in4He @6,7#, and our approach for the
calculation of the sound attenuation near the critical poin
Tc in pure fluids is quite in the spirit of this treatment.

In addition to the sound attenuation and sound veloc
we calculate the expression of the frequency-dependent
cosity. This has been considered years ago within a dec
pled mode theory by Bhattacharjee and Ferrell@8,9#. Here
we extend the calculation to the nonasymptotic region.

A derivation of the complete set of equations describ
the critical dynamics of a mixture including the sound mo
has been given in@10#. Here we use the specification of th
set of these equations to the case of pure fluids to calcu
within the field theoretic theory of dynamical critical phe
nomena the sound attenuation in one loop order. Althou
the attenuation can be calculated by a so-called freque
dependent specific heat within the simpler model H, we p
fer to stay within the complete model and express the atte
ation by the appropriate vertex functions. This allows us
identify additional~however, less diverging! terms missing
in the simplified version.

The paper is organized as follows. In Sec. II we pres
the dynamical equations and identify the static vertex fu
tions. Then we relate in Sec. III the hydrodynamic transp
coefficients to the unrenormalized dynamic vertex functio
and give their one loop expressions. In Sec. IV we perfo
the necessary renormalizations and show that no new si
larities besides those of model H appear. Then we nee
relate the transport coefficients to the renormalized ver
functions and to the renormalized dynamical paramet
This is done in Sec. V. The zero frequency results are
cussed in Sec. VI and Sec. VII contains the asymptotic s
ing functions together with the frequency dependence atTc .
In three Appendixes we present the static and dynamic fu
683 © 1998 The American Physical Society
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684 57R. FOLK AND G. MOSER
tionals used for the loop expansion and give a short desc
tion of the derivation of the dynamic equations. A compa
son with experiment using the theoretical results will
presented in a second part~a short account on this has bee
published in@4,11#!.

II. EXTENDED DYNAMIC MODEL IN PURE LIQUIDS

In this section we present the dynamic model for the g
liquid transition suitable for the field-theoretic renormaliz
tion group treatment, by which we calculate critical effects
the thermal conductivity, the shear viscosity~frictional coef-
ficient!, and the sound propagation. The dynamical univ
sality class is defined by the dynamical equations for the
of local volume densities enclosing the entropy densitys(x)
and the transverse momentum densityjt(x), with the con-
straint “• jt50. Choosing the entropy per mas
s(x)5s(x)/r(x) as the order parameter the dynamic mo
that is known as model H was suggested by Halperin, H
henberg, and Siggia@1,12#. All critical singularities con-
nected with the gas-liquid transition in the pure fluid a
related to the critical singularities found within this model.
order to obtain a model that also describes critical so
propagation, the set of densities has to be extended by
mass densityr(x) and the longitudinal momentum densi
j l(x) (“3 j l50). As a consequence it is necessary to use
extended set of dynamic equations which include mass c
servation and the effects of bulk viscosity.

Recently this extended system of dynamic equations
the corresponding static functional has been derived for
uid mixtures @10#. The dynamic model for pure liquids i
obtained from these equations by reducing the mixt
model and some details of@10# are repeated in the Appendix
The resulting dynamic equations for the order parameterf0
@the entropy density, defined by Eq.~A14!#, the secondary
densityq0 @related to the mass density and defined by E
~A15!#, and the longitudinal and transverse momentum d
sity j l ,jt are

]f0

]t
5G° ¹2

dH

df0
1L° f¹2

dH

dq0
2g° ~“f0!•

dH

d j
1Qf ,

~2.1!

]q0

]t
5L° f¹2

dH

df0
1l° ¹2

dH

dq0
2c°“•

dH

d j l
2g°“•S q0

dH

d j D
2g° lf0“–

dH

d j l
1Qq , ~2.2!

] j l
]t

5l° l¹
2
dH

d j l
2c°“–

dH

dq0
2g° l“–S f0

dH

dq0
D1g° ~12T!

3H ~“f0!•
dH

df0
1q0“–

dH

dq0
J 2g° ~12T!

3H(
k

F j k“–

dH

d j k
2¹kj

dH

d j k
G J 1Ql , ~2.3!
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] jt
]t

5l° t¹
2
dH

d jt
1g°TH ~“f0!•

dH

df0
1q0“–

dH

dq0
J

2g°TH(
k

F j k“–

dH

d j k
2¹kj

dH

d j k
G J 1Qt. ~2.4!

T is the projector to the direction of the transverse mom
tum density, which corresponds to a projection orthogona
the wave vector in Fourier space. In the fast fluctuat
forces Q i(x,t)( i 5f,q,l ,t) memory effects are irrelevan
and their Gaussian spectrum fulfills the Einstein relations

^Q i~x,t !Q j~x8,t8!&52Li j ~x!d~ t2t8!d~x2x8!, ~2.5!

where the matrix@Li j # is given by

@Li j #5S 2G° ¹2 2L° f¹2 0 0

2L° f¹2 2l° ¹2 0 0

0 0 2l° l¹
2 0

0 0 0 2l° t¹
2

D .

~2.6!

The mode couplingsc° , g° , andg° l are defined as

c°5RTr, g°5
RT

ANA

, g° l5S ]r

]s D
P

RT

ANA

, ~2.7!

with the gas constantR and the Avogadro numberNA . Due
to mass conservation the dynamic equation for the mass
sity is purely reversible~continuity equation!. Therefore only

three of the five Onsager coefficientsG° ,L° f ,l° ,l° l , and l° t
constitute an independent set of coefficients. The coefficie

L° f andl° formally appear because the secondary densityq0
represents a linear combination of the entropy density
the mass density fluctuations. Both of these coefficients

related toG°

L° f52S ]r

]s D
P

G° , l° 5S ]r

]s D
P

2

G° . ~2.8!

In the noncritical background Eqs.~2.1!–~2.4! reduce at van-
ishing mode couplings to the usual hydrodynamic equatio
The independent Onsager coefficients are related to the b
ground values of the thermal conductivitykT

(0) , the shear

viscosity h̄ (0), and the bulk viscosityz (0):

G° 5
RkT

~0!

r2
, l° l5RTS z~0!1

4

3
h̄ ~0!D , l° t5RTh̄ ~0!.

~2.9!

The choice~A14! and~A15! for order parameter and secon
ary density guarantees a static functionalH with a diagonal
Gaussian part and with vanishing third order terms for
order parameter. The corresponding Hamiltonian is
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57 685FREQUENCY-DEPENDENT SHEAR . . . . I. . . .
H5E ddxH 1

2
t°f0

2~x!1
1

2
@“f0~x!#21

ũ
°

4!
f0

4~x!

1
1

2
aqq0

2~x!1
1

2
g° qq0~x!f0

2~x!1
1

2
aj jt

2~x!1
1

2
aj j l

2~x!

2h° qq0~x!J , ~2.10!

where a constant external fieldh° q has been introduced
whose value fixes the average value of the secondary de
q0(x) to zero. Thus in the unordered phase above the crit

temperatureTc , where we havet°.0, the expectation value
of the order parameter vanishes. The coefficientsaq andaj
are related to background parameters by

aq5
1

RTrS ]P

]r D
s

~0!

, aj5
1

RTr
. ~2.11!

The superscript (0) in Eq.~2.11! indicates thermodynamic
background derivatives that do not contain any critical s
gularity. The Fourier transforms of the fluctuation dens
correlation functions taken at vanishing wave numberk are
related to thermodynamic derivatives. We define

^AB&c[^AB&c~k50!5E ddx^A~x!B~0!&c

5E ddx^DA~x!DB~0!&c , ~2.12!

whereA,B hold for f0 ,q0 ,j l ,jt . The subscriptc character-
izes the cumulant̂AB&c5^AB&2^A&^B&. The expectation
values are taken at vanishing external field variatio
^F(A,B, . . . )&5*D$A,B, . . . %F(A,B, . . . )wlocudH50, with
the local probability densitywloc defined in Eq.~A1!. The
static correlations of the order parameter and the secon
densities are related to thermodynamic derivatives via
relations

^f0f0&c5
RT

r S ]s

]TD
P

, ~2.13!

^q0q0&c5RTrS ]r

]PD
s

. ~2.14!

Equations~2.13! and ~2.14! constitute the connection be
tween the static model defined by the functional~2.10! and
the thermodynamic derivatives. The momentum density te
in ~2.10! represents the kinetic energy density, which is is
tropic. The correlations of the currents can be written as

^ j l ^ j l&c5^ jt ^ jt&c[^ j j &c1 ~2.15!

in which ^ denotes the tensor product between two vect
and 1 the unit matrix. Because the Hamiltonian does n
include interactions of the currents with other densities
correlation~2.15! simply is
ity
al

-

,

ry
e

m
-

s
t
e

^ j j &c5RTr5
1

aj
. ~2.16!

All the nondiagonal correlations vanish and therefore

static two-point vertex functionsG° ab are simply given by the
inverse correlations

G° ff5
1

^f0f0&c
, G° qq5

1

^q0q0&c
, G l l 5G tt5

1

^ j j &c
,

~2.17!

which may be calculated in a systematic perturbation exp
sion by accumulating the one-particle irreducible two po
graphs@13#. A static functional of the same structure as E
~2.10! appears in the critical theory of the superfluid tran
tion in 4He ~there the order parameter is a complex qua
titiy !, therefore we will take over the results known for th
case. The static correlation functions are well studied and
calculation details we refer to@14#. The secondary densitie
q0 ,j l , and jt in ~2.10! may be eliminated by integration
Then the static asymptotic behavior in fluids at the gas-liq
transition is completely determined by thef4 model @1#

H5E ddxH 1

2
r°f0

2~x!1
1

2
@¹f0~x!#21

u°

4!
f0

4~x!J ,

~2.18!

with the parameters

r°5t°1
g° qh° q

aq
, u°5 ũ

°
2

3g° q
2

aq
. ~2.19!

For this reason all vertex functions and correlations in
extended model~2.10! may be written as functions of th

f4-model parametersr°,u° instead oft° , ũ° and the correlations
of the secondary densityq0 are related to order paramete
correlations calculated with Eq.~2.18!. In particular the fol-
lowing relations hold for the expectation value and the t
point correlation of the secondary density:

^q0&~ r°,g° q,u° !5h° q2g° q^
1
2 f0

2&~ r°,u° !, ~2.20!

^q0q0&c~ r°,g° q,u° !5aq1g° q
2^ 1

2 f0
2 1

2 f0
2&c~ r°,u° !. ~2.21!

From Eq.~2.20! it follows that the constant external field ha

to be h° q5g° q^
1
2 f0

2&(r°,u° ) to guarantee a vanishing expect
tion value ofq0 and relation~2.19! can be written as

r°5t°1
g° q

2

aq
^ 1

2 f0
2&~ r°,u° !, ~2.22!

which defines the connection betweenr° andt° in every order
of the perturbation expansion.

III. MODEL TRANSPORT COEFFICIENTS

From Eqs.~2.1!–~2.4! we derive a dynamic functiona
analogous to@15# from which the dynamic two-point vertex

functions G° a,b̃ are calculated within a Feynman graph e
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686 57R. FOLK AND G. MOSER
pansion. Some definitions and details are presented in
Appendixes. In this section we derive the relations betw
the dynamic vertex functions of the model and hydrod
namic transport coefficients like thermal conductivitykT ,
shear viscosityh̄ , bulk viscosityz, sound velocitycs, and
sound attenuationa. From the hydrodynamic equations for
simple liquid @16# one gets immediately equations linear
the currents

]s~x,t !

]t
2

kT

rT
¹2T~x,t !50, ~3.1!

] jt8~x,t !

]t
2

h̄

r
¹2jt8~x,t !50, ~3.2!

]r~x,t !

]t
1“• j l8~x,t !50, ~3.3!

] j l8~x,t !

]t
1“P~x,t !2

1

rS z1
4

3
h̄ D“„“• j l8~x,t !…50.

~3.4!

Introducing the Fourier components (A5s,r,P,T, j l ,jt)

A~x,t !5E d3k

~2p!3E dv

2p
A~k,v!eikx2 ivt ~3.5!

we calculate the coefficient determinant of Eqs.~3.1!–~3.4!
in leading~hydrodynamic! order ofk andv @17#. The result
is

DH~k,v!5~2 iv1Dtk
2!~2 iv1DTk2!~v22cs

2k2

1Dsivk2!. ~3.6!

The coefficients are defined as

Dt5
h̄

r
, DT5

kT

rCP
, ~3.7!
d

y
q

he
n
-

cs
25S ]P

]r D
s

, Ds5
1

rS z1
4

3
h̄ D1

kT

r S 1

CV
2

1

CP
D

~3.8!

with the isochoric specific heatCV5T(]s/]T)r and the iso-
baric specific heatCP5T(]s/]T)P . Equation~3.6! contains
two diffusion modes and one sound mode. The shear di
sion coefficientDt and the thermal diffusion coefficientDT
describe the transverse shear mode and heat diffusion in
liquid. The sound mode is described by the sound velocitycs
and sound diffusion coefficientDs , which determines the
sound attenuation

a5
v2

2cs
3

Ds ~3.9!

measured in experiments. The contributions to the dyna
equations that are linear in the densities determine the Ga
ian part ~C10! of the dynamic functional~C9! defined in
Appendix C and therefore the lowest order of the dynam
two point vertex functions. In the noncritical background t
model dynamic equations describe hydrodynamics, there
the Gaussian part has to be consistent with the Gaus
functional following from the hydrodynamic equations. Th
we get a connection between background hydrodynam
and the lowest order of the dynamic vertex functions. A
proaching the critical temperature, fluctuations arise that l
to critical contributions to the thermodynamic derivativ
and in the Onsager coefficients of the hydrodynamic eq
tions but do not influence the structure of the equatio
Within the model the effects of fluctuation are calculated in
perturbation expansion of the full dynamic functional and a
contained in the perturbation contributions to the dynam
two point vertex functions~C14!. Replacing the lowest orde
vertex functions by the full ones in the critical region, w
keep the same formal relations between the hydrodyna
transport coefficients and the vertex functions as in the ba
ground. From perturbation expansion one can see that
dynamic vertex functions introduced in Eq.~C16! have the
structure
@G° ab̃#5S 2 iv1k2f°ff̃ k2f°f q̃ kg° f l̃ 0

k2f°qf̃ 2 iv1k2f°q q̃ kg° q l̃ 0

kg° l f̃ kg° l q̃ 2 iv1k2f° l l̃ 0

0 0 0 2 iv1k2f° t t̃

D . ~3.10!
The complex functionsf°ab̃ andg° ab̃ depend on the static an
dynamic model parameters as well as onk and v. In the
hydrodynamic limit we takek50 and keep the frequenc
finite. Thus the vertex functions on the right hand side of E
~3.10! are defined as the derivatives

f°ab̃~t° ,V° ,$J̃
°

%!5
]

]k2
G° ab̃~k,t° ,V° ,$J̃

°
%!uk50 , ~3.11!
.

g° ab̃~t° ,V° ,$J̃
°

%!5
]

]k
G° ab̃~k,t° ,V° ,$J̃

°
%!uk50 , ~3.12!

where we have introduced the frequency parameter

V° 5
v

2G°
. ~3.13!
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$J̃
°

% represents the set of the static and dynamic model

rameters$g° q , ũ
°

,G° ,L° f ,l° ,l° l ,l° t ,g° ,g° l%. Calculating the deter-
minant of Eq.~3.10! in leading order we get

D th5~2 iv1Dtk
2!~2 iv1DTk2!~v22Cs

2k21Dsivk2!.
~3.14!

The coefficients are defined by the equations

Cs
252~g° q l̃ g° l q̃1g° f l̃ g° l f̃!, ~3.15!

DtDT5
f° t t̃

Cs
2 @ f°ff̃g° q l̃ g° l q̃1 f°q q̃g° f l̃ g° l f̃2 f°f q̃g° q l̃ g° l f̃

2 f°qf̃g° l q̃g° f l̃ #, ~3.16!

Ds5 f°ff̃1 f°q q̃1 f° l l̃ 2
DtDT

f° t t̃

, ~3.17!

Dt1DT5 f° t t̃ 1
DtDT

f° t t̃

. ~3.18!

Although equation~3.14! looks like Eq. ~3.6! we have to
note that the coefficients in Eq.~3.14! are complex quanti-
ties. The thermal diffusion coefficientDT and the shear dif-
fusion coefficientDt are simply determined by the real par
of the corresponding complex coefficients

DT5Re@DT#, Dt5Re@Dt#. ~3.19!

Expressions for the sound velocitycs and the sound diffusion
Ds may be obtained from the dispersion relation. From E
~3.6! the dispersion relationv25(cs

22 ivDs)k
2 follows

while the corresponding expression from Eq.~3.14! is
v25(Cs

22 ivDs)k
2. Comparing real and imaginary parts a

lows one to identify the frequency-dependent sound velo
and sound diffusion:

cs
2~ t,v!5Re@Cs

2~ t,v!2 ivDs~ t,v!#,

Ds~ t,v!52
1

v
Im@Cs

2~ t,v!2 ivDs~ t,v!#. ~3.20!

The frictional coefficientb @8,9# measured in an oscillat
ing disk experiment is related to the complex shear visco

h̄5rDt ~3.21!

by

b~ t,v!'@Reh̄ ~ t,v!#1Im@ h̄~ t,v!#. ~3.22!

Analogous to thel transition in 4He @6,7# the model only
becomes renormalizable when the slow heat and shear m
are separated from the fast sound mode. This means tha

dynamic model has to be considered in the limitc°→`. The
structure of the perturbation theory gets simpler and one

see that no contributions arise tog° l f̃ . In this limit also the
dynamic functional reduces to model H of Siggia, Halper
a-

.

ty

ty

des
the

n

,

and Hohenberg@1# when the secondary densityq0 and the
longitudinal momentum densityj l are eliminated by integra

tion. Thus in the limitc°→` we haveg° l f̃50. Equations
~3.15!–~3.18! simplify to

Cs
252g° q l̃ g° l q̃ , Ds5 f°q q̃1 f° l l̃ 1

f°qf̃g° f l̃

g° q l̃

, ~3.23!

Dt5 f° t t̃ , DT5 f°ff̃2
f°qf̃g° f l̃

g° q l̃

. ~3.24!

From Eqs.~C11! and ~C12! and the structure of the pertur

bation theory follows thatg° q l̃ is proportional toc° while

from g° f l̃ no factor c° can be extracted. Therefore the la

term in Ds andDT is proportional to 1/c° and may be ne-

glected in the limitc°→`. Inserting Eqs.~3.23! and ~3.24!
into Eqs.~3.19! and~3.20! the hydrodynamic transport coe
ficients are

cs
252Re@g° q l̃ g° l q̃1 iv~ f°q q̃1 f° l l̃ !#, ~3.25!

Ds5
1

v
Im@g° q l̃ g° l q̃1 iv~ f°q q̃1 f° l l̃ !#, ~3.26!

Dt5Re@ f° t t̃ #, DT5Re@ f°ff̃#. ~3.27!

From perturbation theory one can see that in the case of fi

frequencies we may extract functionsG° ab from thek deriva-
tives of the vertex functions

@ f°ab̃#5S f°ff̃ f°f q̃ g° f l̃ 0

f°qf̃ f°q q̃ g° q l̃ 0

0 g° l q̃ f° l l̃ 0

0 0 0 f° t t̃

D , ~3.28!

which have the property that they reduce at vanishing

quencies to the static vertex functionsG° ab
(s) calculated within

the extended model~2.10!. Particularly we have

lim
v→0

G° ab~t° ,V° ,$J° %!5G° ab
~s! ~t° ,g° q , ũ

°
!. ~3.29!

Thus the matrix~3.28! may be written as the product

@ f°ab̃#~t° ,V° ,$J̃
°

%!5@G° ab#~t° ,V° ,$J̃
°

%!@ f°ab̃
~d!

#~t° ,V° ,$J̃
°

%!.
~3.30!

At zero frequency Eq.~3.30! coincides with results that hav
been obtained for liquids and liquid mixtures calculat
within model H and model H8 @10,18,4#. The matrices on the
right hand side of Eq.~3.30! are defined as
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@G° ab#5S G° ff
0 0 0

0 G° qq 0 0

0 0 G l l 0

0 0 0 G tt

D ,

@ f°ab̃
~d!

#5S f°ff̃
~d! f°f q̃

~d! g° f l̃
~d! 0

f°qf̃
~d! f°q q̃

~d! g° q l̃
~d! 0

0 g° l q̃
~d!

f° l l̃
~d! 0

0 0 0 f° t t̃
~d!

D . ~3.31!

G l l andG tt appearing in Eq.~3.31! are also at finite frequen
cies equal to the constantG l l 5G tt5aj , thus we do not need
any distinction between static functions and frequen
dependent functions.

In order to introduce the correlation lengthj as the tem-
perature scale in all vertex functions, we replace in a fi

step the parameterst° and ũ
° of the extended model~2.10! by

the corresponding parametersr° andu° of thef4 model~2.18!
using Eqs.~2.19! and ~2.22!. This allows the calculation o
the vertex functions bye expansion as well as ind53 @19#.
This step leads at finite frequency to vertex functio

G° ab(r°,V° ,$J° %), f°ab̃
(d)(r°,V° ,$J° %), and g° ab̃

(d)(r°,V° ,$J° %), where

$J% represents now the set$g° q ,u° ,G° ,L° f ,l° ,l° l ,l° t ,g° ,g° l%.

Analogously the static vertex functionG° qq
(s)(t° ,g° q , ũ° ) of the

secondary densityq0 change toG° qq
(s)(r°,g° q,u° ). The static or-

der parameter vertex functionG° ff
(s) (t° ,g° q , ũ

°
) calculated

within the extended model is equal to the correspond
function calculated within thef4 model. Therefore express

ing this function by thef4-model parameters the explicitg° q
dependence drops out and we get thef4-model order param-

eter vertex functionG° ff
(s) (r°,u° ). The vertex functions obtaine

so far contain dimensional poles not only atd54 but also at
d53 when the cut off wave number is shifted to infinity.
the second step we have to remove thed53 poles from the
vertex functions, which is also necessary to obtain a defi
expression for the correlation length atd53. This can be
done by inserting explicitly the shift of the critical temper

ture characterized by a critical valuer°c into the vertex func-

tions @19#. The critical valuer°c is defined by the condition

G° ff
(s) (r°c ,u° )50 from which r°c(u° ) may be calculated by in

version in every order of perturbation expansion. All vert

function may be expressed as a function ofr°2r°c by insert-

ing r°5r°2r°c1r°c . The correlation length is defined by@13#

j2~ r°2r°c ,u° !5
] lnG° ff

~s! ~k,r°2r°c ,u° !

]k2 U
k50

, ~3.32!

which is a finite expression atd53 @19#. Inserting

r°2r°c5F(j22,u° ) into the vertex functions, whereF may be
calculated by inversion of Eq.~3.32!, the temperature scale i
-

t

s

g

d

now expressed by the inverse correlation length gett

functions G° ab(j22,V° ,$J° %), f°ab̃
(d)(j22,V° ,$J° %) and

g° ab̃
(d)(j22,V° ,$J° %).

To make the procedure mentioned above more clear,
will apply it in the following to the vertex functions calcu
lated in one loop order showing the main steps for the st
vertex functions. The static vertex functions calculat
within the extended model~2.10! are

G° ff
~s! (t° ,g° q , ũ° )5t°S ũ

°

2
2

g° q
2

aq
D I 1~t° !, ~3.33!

G° qq
~s!(r°,g° q , ũ° )5aqS 12

g° q
2

2aq
I 2~t° !D , ~3.34!

where we have defined

I m~t° !5E
k8

1

~t°1k82!m
. ~3.35!

Note that the integralI 1 appearing in the order paramet
vertex function contains a dimensional pole atd53 for an
infinite cutoff wave number. In the above equations we m
insert the one loop expression of Eq.~2.22!

r°5t°1
g° q

2

2aq
I 1~ r° ! ~3.36!

and also Eq.~2.19! to change the extended model paramet

t° and ũ° to the parametersr° andu° of the f4 model ~2.18!.
The result is

G° ff
~s! ~ r°,u° !5r°1

u°

2
I 1~ r° !, ~3.37!

G° qq
~s!~ r°,g° q ,u° !5aqS 12

g° q
2

2aq
I 2~ r° !D . ~3.38!

The order parameter vertex function~3.37! is now equal to
the expression obtained by a calculation within thef4 model

@13#. The critical valuer°c is in one loop order defined by th
equation

r°c1
u°

2
I 1~ r°c!50. ~3.39!

Inserting the zero loop solutionr°c50 into the first order
term of ~3.39! the critical value in one loop order is

r°c52
u°

2
I 1~0!. ~3.40!

Replacingr° by r°2r°c1r°c in Eqs.~3.37! and ~3.38! we get
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G° ff
~s! ~ r°2r°c ,u° !5r°2r°c1

u°

2
@ I 1~ r°2r°c!2I 1~0!#,

~3.41!

G° qq
~s!~ r°2r°c ,g° q ,u° !5aqS 12

g° q
2

2aq
I 2~ r°2r°c!D . ~3.42!

The order parameter vertex function at finite wave numbe

one loop order is simply given byG° ff
(s) (r°2r°c ,u° )1k2. Insert-

ing in Eq. ~3.32! the resulting expression for the correlatio
length is

j22~ r°2r°c ,u° !5r°2r°c1
u°

2
@ I 1~ r°2r°c!2I 1~0!#.

~3.43!

In contrast toI 1(r°) the integral

I 1~ r°2r°c!2I 1~0!52E
k8

r°2r°c

k82~ r°2r°c1k82!
~3.44!

contains no poles atd53 and Eq.~3.43! is a well defined
equation at three dimensions. Alld53 poles have been ab

sorbed in the critical valuer°c . The correlation function may
be introduced in the vertex functions~3.41! and ~3.42! by
inserting the inverse of Eq.~3.43!. The resulting one loop
functions are

G° ff
~s! ~j22,u° !5j22,

G° qq
~s!~j22,g° q ,u° !5aqF12

g° q
2

2aq
I 2~j22!G . ~3.45!

The above procedure may be performed in every orde
perturbation expansion removing all poles in three dim
sions in the model functions@19#. Analogous to Eqs.~3.33!–
~3.45! the correlation length also will be introduced in th
n

of
-

vertex functions calculated at finite frequenc

G° ff(j22,V° ,$J° %) does not depend explicitly on the fre
quency in one loop order. We get

G° ff~j22,V° ,$J° %!5G° ff
~s! ~j22,u° !. ~3.46!

The one loop expression ofG° qq(j
22,V° ,$J° %) is given by

G° qq~j22,V° ,$J° %!

5aqS 12
g° q

2

2aq
E

k8

k82

~j221k82!@2 iV° 1k82~j221k82!#
D

~3.47!

from which one can immediately see that it reduces to
corresponding static function in Eq.~3.45! for v50. Analo-
gous in model H@1# the time scale ratios

w° t5
G°

ajl° t

, f° t5
g°

AG° l° t

~3.48!

will be introduced. In the present model additional rati
may be introduced corresponding to the longitudinal mom
tum density

w° l5
G°

ajl° l

, f° l5
g°

AG° l° l

. ~3.49!

The cutoff dimensionsw° t;L22 andw° l;L22 are negative,
which means that the parameters are irrelevant for the crit
theory. The renormalization in the following section will b
performed at vanishing irrelevant parameters@20#. Therefore
it is sufficient to calculate the vertex functions in Eq

~3.25!–~3.27! at w° t5w° l50. Introducing the correlation
length ~3.43! we get for the purely dynamic parts of th
vertex functions in one loop order
f°ff̃
~d!

~j22,V° ,$J° %!5G° H 12
f° t

2

j22Ek8

sin2u

j221k82J , ~3.50!

f° t t̃
~d!

~j22,V° ,$J° %!5l° tH 11
f° t

2

6 F E
k8

k82sin2u

~j221k82!@2 iV° 1k82~j221k82!#
22E

k8

k84sin2ucos2u

@2 iV° 1k82~j221k82!#2S 11
k82

j221k82D G J ,

~3.51!

f° l l̃
~d!

~j22,V° ,$J° %!5l° lH 11
f° l

2

6 F E
k8

k82

~j221k82!@2 iV° 1k82~j221k82!#
1E

k8

~j222k82!k82cos2u

@2 iV° 1k82~j221k82!#2S 11
k82

j221k82D G J ,

~3.52!
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The second integrals within the braces in Eqs.~3.51! and
~3.52! are obtained after performing the derivatives of t
one loop contribution according to the definition in E
~3.11!.

f°q q̃
~d!

~j22,V° ,$J° %!5l° , ~3.53!

f°qf̃
~d!

~j22,V° ,$J° %!5 f°f q̃
~d!

~j22,V° ,$J° %!5L° f , ~3.54!

g° q l̃
~d!

~j22,V° ,$J° %!5g° l q̃
~d!

~j22,V° ,$J° %!5 ic° . ~3.55!

Note that in Eq.~3.50! no frequency dependence appea

explicitly at w° t50 in one loop order and therefore it is equ
to the expression obtained in the reduced model H or mix

model H8 for w° 350, respectively~compare@10#!. The dy-
namic vertex function of the transverse mode~3.51! reduces
in the limit v→0 to the corresponding model H function@1#.
Inserting Eqs.~3.30!, ~3.46!, ~3.47!, and ~3.50!–~3.55! into
Eqs. ~3.25!–~3.27!, the expressions for the hydrodynam
transport coefficient are expressed by the unrenormal
model parameters.

IV. RENORMALIZATION

A. Statics

The model will be treated within the field-theoretic reno
malization group theory. Using the minimal subtracti
scheme@13# dimensional singularities at space dimensi
d54 in the vertex functions will be absorbed intoZ factors.

The longitudinal and transverse momentum density n
no renormalization because these densities only enter in
dratic order in the extended model Hamiltonian. The ren
malization of Eq.~2.10! follows along the same lines as i
model F for the superfluid transition in4He @20,14#, which is
well known and therefore only will be sketched briefly in th
following. Calculation details are comprehensively shown
@14# ~here we have the case of a one component order
rameter and the specific heat is diverging!. The order param-
eter and the secondary field are renormalized by

f05Zf
1/2f, q05Zq

1/2q. ~4.1!

From Eq.~2.21! it follows immediately thatZq is determined
by the singularities of thef2-f2 correlation function, which
is proportional to the specific heat

Zq
21511

gq
2

aq
A~u!. ~4.2!

A(u) contains the singularities of the specific heat calcula
within the f4 model and is obtained by an additive reno
malization of thef2-f2 correlation function.u is the renor-
malized fourth order coupling of thef4 model ~2.18! in
which renormalized parameters will be introduced by

r°2r°c5Zf
21Zrr , u°5keZf

22ZuuAd
21 . ~4.3!

k is a reference wave number that will be specified later
e5d24. The factorAd5G(32d/2)/@2d22pd/2(d22)# has
been chosen to obtain a minimal number of perturbation c
s

re

d

d
a-

r-

a-

d

d

n-

tributions in ane expansion of the specific heat@14#. In the
extended model~2.10! we have additionally

g° q5ke/2Zf
21Zq

21/2ZggqAd
21/2. ~4.4!

SinceZg in Eq. ~4.4! may be replaced byZ factors of thef4

model via the relation

Zg5ZqZr ~4.5!

the critical singularities are completely the same as in thef4

model ~2.18!, no new singularities appear in the extend
model ~2.10!. From theZ factors we define thez functions

z i5S k
] lnZi

21

]k D
0

, i 5f,q,r ,u. ~4.6!

The index 0 in Eq.~4.6! indicates that the derivative is take
at fixed unrenormalized parameters. The renormalization
the static parameters is described by the flow equations.
temperature dependence of these parameters is then d
mined from thel dependence via a matching condition~see
below!

l
dr

dl
5r @z r~u!2zf~u!#, ~4.7!

l
dgq

dl
5gqF2

e

2
2zf~u!1

1

2
zq~gq ,u!1z r~u!G , ~4.8!

l
du

dl
5u@2e22zf~u!1zu~u!#. ~4.9!

From Eq.~4.9! one obtains the Heisenberg fixed pointuH
! as

the stable one@21,22#. For a one component order parame
a finite fixed pointgq

! follows from Eq. (4.8). The fixed
point valuesz i

! of the z functions are related to the critica
exponents by

zf
! 52h, zq

!5
a

n
, z r

!2zf
! 522

1

n
. ~4.10!

The fixed point value of the couplinggq is related to the
fixed point value ofzq

! @23,24#. In one loop order the relation
readsgq

2!/aq52zq
! .

The renormalization of the static vertex functions read

Gff
~s! ~j22,u,k!5ZfG° ff

~s! ~j22,u° !, ~4.11!

Gqq
~s!~j22,gq ,u,k!5ZqG° qq

~s!~j22,g° q ,u° !. ~4.12!

From the corresponding standard renormalization gro
equations in field theory@13# follow the solutions

Gff
~s! ~j22,u,k!5~k l !2e*1

l
~dx/x!zfĜff

~s! S j22~ t !

~k l !2
,u~ l !D ,

~4.13!
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Gqq
~s!~j22,gq ,u,k!5e*1

l
~dx/x!zqĜqq

~s!S j22~ t !

~k l !2
,gq~ l !,u~ l !D .

~4.14!

Ĝff
(s) and Ĝqq

(s) are the amplitude functions, which are dete
mined by the corresponding two point vertex functions c
culated in a loop expansion. In order to guarantee finite a
plitude functions in the critical limitt→0 usually one
chooses@19#

j22~ t !

~k l !2
51, ~4.15!

which defines the relation between reduced temperature
flow parameter. All terms containing logarithms of E
~4.15! vanish in the amplitude functions. The critical sing
larities are then completely collected in the prefactors of E
~4.13! and~4.14!, while the amplitude functions stay smoo
and finite. Specifying the wave numberk5j0

21 in Eq.
~4.15!, the relation between reduced temperature and fl
parameter is written as

l 5j0j21~ t !. ~4.16!

Thus the static vertex functions are related to the renorm
ized parameters by

G° ff
~s! ~j22,u° !5~k l !2Zf

21e*1
l
~dx/x!zfĜff

~s!
„u~ l !…, ~4.17!

G° qq
~s!~j22,g° q ,u° !5Zq

21e*1
l
~dx/x!zqĜqq

~s!
„gq~ l !,u~ l !….

~4.18!

In one loop order we simply haveĜff
(s)

„u( l )…51. Equations
~2.17! and ~2.21! give rise to the exact relation

Ĝqq
~s!

„gq~ l !,u~ l !…5
aq

11 @gq
2~ l !/aq# F1

~s!
„u~ l !…

~4.19!

whereF1
(s)

„u( l )… is the amplitude of thêf2f2&c correlation
function calculated within thef4 model @14#.

B. Dynamics

The conjugated fieldsf̃0, q̃0, j̃ l0, and j̃ t0 introduced in
the Appendixes are renormalized analogous to Eq.~4.1!.

f̃05Zf̃
1/2

f̃, q̃05Zq̃
1/2

q̃ , ~4.20!

j̃ l05Z l̃
1/2j l̃ , j̃ t05Z t̃

1/2j t̃. ~4.21!

All hydrodynamic denisities are conserved densities. T
frequency terms of the dynamic vertex functio

(]G° ab̃ /]v)uv50 do not containe poles @20#. As a conse-
quence we get

Zf̃5Zf
21 , Zq̃5Zq

21, Z l̃ 51, Z t̃ 51. ~4.22!

Using Ward identities, which are a consequence of the G
ilean invariance of the equations of motion@20#, one finds
-
-
-

nd

s.

w

l-

e

l-

that the mode couplings need noZ factors. Thus the follow-
ing renormalized couplings will be introduced:

g°5k11e/2gAd
21/2, g° l5k21e/2glAd

21/2. ~4.23!

The Onsager coefficients renormalize as

G° 5ZGG, L° f5kZLf
Lf , l° 5k2Zll, ~4.24!

l° l5k2Zl l
l l , l° t5k2Zl t

l t . ~4.25!

Using Eqs.~4.1!, ~4.20!, and~4.22! the dynamic vertex func-
tions defined in the Appendixes get the following renorm
ization factors:

Gff̃5G° ff̃ , Gq q̃5G° q q̃ , G l l̃ 5G° l l̃ , G t t̃ 5G° t t̃ ,
~4.26!

Gf q̃5Zf
1/2Zq

21/2G° f q̃ , Gqf̃5Zf
21/2Zq

1/2G° qf̃ , ~4.27!

Gq l̃ 5Zq
1/2G° q l̃ , G l q̃5Zq

21/2G° l q̃a. ~4.28!

The vertex functions factorize into a static and dynamic p
as discussed in the previous section, as a consequenceZ
factors defined in Eq.~4.24! also separate into a static an
dynamic part. One gets

ZG5ZfZG
~d! , Zl5ZqZl

~d!, ZLf
5Zf

1/2Zq
1/2ZLf

~d! .

~4.29!

The static vertex functions of the longitudinal and transve
momentum density are simply represented by the cons
parameteraj . ThereforeZl l

and Zl t
in Eq. ~4.25! do not

contain statice poles. From Eqs.~3.30! and~4.26!–~4.28! it
follows immediately that

f ff̃
~d!

5Zf
21f°ff̃

~d! , f q q̃
~d!

5Zq
21f°q q̃

~d! , ~4.30!

f f q̃
~d!

5Zf
21/2Zq

21/2f°f q̃
~d! , f qf̃

~d!
5Zf

21/2Zq
21/2f°qf̃

~d! , ~4.31!

gl q̃
~d!

5Zq
21/2g° l q̃

~d!, gq l̃
~d!

5Zq
21/2g° q l̃

~d! , ~4.32!

f l l̃
~d!

5 f° l l̃
~d! , f t t̃

~d!
5 f° t t̃

~d! . ~4.33!

In Eq. ~3.53! one can see that the perturbation expans

does not contribute tog° l q̃
(d) , which means that noe poles

appear in this function. Thereforec° does not need an inde
pendent renormalization factor. The corresponding renorm
ized coefficient absorbs theZ factor in Eq.~4.32!.

c°5k3Zq
1/2c. ~4.34!

Analogous to mixtures@10# no e poles arise from perturba
tion theory tof q q̃

(d) , f f q̃
(d) , and f f q̃

(d) therefore we haveZLf

(d)51

and Zl
(d)51 in all orders of the loop expansion. In Eq

~4.24! and ~4.29! only the static renormalization factors re
main in the above-mentioned Onsager coefficients.G, l l ,
and l t get nontrivial dynamicZ factors. We definez func-



.

d
o

r

de

x

dy-

-
sly

e

y-

s.

ion
ion

les

d

e

Eq.
ar

692 57R. FOLK AND G. MOSER
tions for i 5G,Lf ,l,l l ,l t analogous to Eq.~4.6!. Equation
~4.29! implies a separation ofzG , zLf

, andzl into a static
and dynamic part:

zG5zG
~d!1zf , zl5zq , zLf

5 1
2 zq1 1

2 zf . ~4.35!

In the last two equationszLf

(d)50 andzl
(d)50 has been used

The critical temperature dependence of all parameters is
termined by flow equations analogous to statics. The fl
equations for the Onsager coefficients read

l
dG

dl
5G~zG

~d!1zf!, l
dl

dl
5l~221zq!, ~4.36!

l
dLf

dl
5Lf~211 1

2 zf1 1
2 zq!, ~4.37!

l
dl l

dl
5l l~221zl l

!, l
dl t

dl
5l t~221zl t

!. ~4.38!

Inserting the renormalized parameters~4.23!, ~4.24!, and
~4.25! into the definitions of the mode coupling paramete
~3.48!, ~3.49! and into~4.34! we get the flow equations

l
d f l

dl
52

1

2
f l~e1zG

~d!1zl l
1zf!, ~4.39!

l
d f t

dl
52

1

2
f t~e1zG

~d!1zl t
1zf!, ~4.40!

l
dc

dl
5c~231 1

2 zq!. ~4.41!

Equations~4.8!, ~4.9!, and ~4.36!–~4.41! completely deter-
mine the critical behavior of the static and dynamic mo
parameters.

At finite frequency no newe poles appear in the verte
functions. TheZ factorsZG

(d),Zl t
and thereforezG

(d),zl t
are

identical to the corresponding quantities in model H. As
consequence the fixed point value of the mode couplingf t is
the same as in model H@1,20# ( f t

!5 f liquid
! Þ0). From Eq.

~4.40! we get at the fixed point

zl t

! 52~e1zG
~d!!

1zf
! ! ~4.42!

and an analogous equation forzl l

! for the finite fixed point

f l
! . Thus from Eqs.~4.39! and~4.40! the fixed point relation

zl l

! 5zl t

! ~4.43!
e-
w

s

l

a

is obtained.

V. CRITICAL BEHAVIOR OF THE TRANSPORT
COEFFICIENTS AT FINITE FREQUENCIES

The transport coefficients are separated into static and
namic contributions by inserting Eq.~3.30! in Eqs. ~3.25!–
~3.27!. In order to obtain the critical behavior of the hydro
dynamic transport coefficients we proceed quite analogou
to the method used at thel transition in 4He @25# and 3He-
4He mixtures@26#. We use the loop expansion only for th

dynamic vertex functionsf°ab̃
(d) andg° ab̃

(d) while the static vertex

functionsG° ab
(s) are replaced by the corresponding thermod

namic derivatives, which will be taken from experiments.

A. Shear viscosity and frictional coefficient

From the definition of the complex shear viscosity Eq
~3.21! and ~3.30! we have

h̄ ~ t,v!5raj f
°

t t̃
~d!

~j22,V° ,$J° %!. ~5.1!

Inserting the solution of the renormalization group equat
for the vertex function used in standard renormalzat
group theory@13# into Eq. ~4.33! the dynamic vertex func-
tion is

f° t t̃
~d!

~j22,V° ,$J° %!5~k l !2l t~ l !

3$11Et„v~ l !,w~ l !,$J~ l !%…%,

~5.2!

where$J( l )% characterizes the renormalized set of variab

$J~ l !%5$gq~ l !,u~ l !,G~ l !,Lf~ l !,l~ l !,l l~ l !,

l t~ l !,g~ l !,gl~ l !%.

The parametersv( l ) and w( l ) represent the renormalize
temperature and frequency variables defined by

v~ l !5
j22~ t !

~k l !2
, w~ l !5

V~ l !

~k l !4
5

v

2G~ l !~k l !4
. ~5.3!

The complex functionEt contains the contributions from th
loop expansion. Defining

f t~ l !5
g~ l !

AG~ l !l t~ l !
, ~5.4!

quite analogous to its unrenormalized counterpart in
~3.48!, the e-expanded one loop contribution to the she
viscosity is
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Et„v~ l !,w~ l !,$J~ l !%…52
f t

2

96H 116F i
v2

w
lnv1

1

v12v2
S v2

2

v1
lnv22

v1
2

v2
lnv1D G2

4

~v12v2!3Fv1
3 2v2

3

3
1

3

2
~v12v2!

3~v1
2 lnv11v2

2 lnv2!2~v1
3 lnv12v2

3 lnv2!G1
2

~v12v2!2Fv1
3

v2
~114lnv1!1

v2
3

v1
~114lnv2!

1S 1

v2
2

2

v12v2
D v1

4 lnv12v4lnv

v2
1S 1

v1
1

2

v12v2
D v2

4 lnv22v4lnv

v1
G J , ~5.5!
tr

ed

in

l-

x

in

p
-

where we have dropped the argumentl in the parameters on
the right hand side of the equation. The parameters in
duced in Eq.~5.5! are defined as

v6~ l !5
v~ l !

2
6AS v~ l !

2 D 2

1 iw~ l !. ~5.6!

Inserting Eqs.~5.2! and ~2.11! into Eq. ~5.1! the shear vis-
cosity generally reads

h̄ ~ t,v!5
1

RT
~k l !2l t~ l !@11Et„v~ l !,w~ l !,$J~ l !%…#,

~5.7!

leading to the real friction coefficient

b~ t,v!'~k l !2l t~ l !†11~Re1Im!

3@Et„v~ l !,w~ l !,$J~ l !%…#‡. ~5.8!

The flow of the Onsager coefficientl t in Eq. ~5.7! is
determined by the flow equation~4.38! whose solution may
be written as

l t~ l !5l tl
22e*1

l
~dx/x!zl t. ~5.9!

The flow parameterl , the reduced temperaturet, and the
frequencyv are related by a matching condition introduc
in the following section, which defines the functionl (t,v).

B. Sound velocity and sound attenuation

The sound velocity and the sound attenuation are obta
from Eqs. ~3.25! and ~3.26! by inserting the renormalized
parameters into

Cs
2~ t,v!52g° q l̃ ~j22,V° ,$J° %!g° l q̃~j22,V° ,$J° %!,

~5.10!

Ds~ t,v!5 f°q q̃~j22,V° ,$J° %!1 f° l l̃ ~j22,V° ,$J° %!.
~5.11!

Separating static and dynamic functions with Eq.~3.30! we
get
o-

ed

Cs
2~ t,v!52ajG

°
qq~j22,V° ,$J° %!@g° q l̃

~d!
~j22,V° ,$J° %!#2,

~5.12!

Ds~ t,v!5G° qq~j22,V° ,$J° %! f°q q̃
~d!

~j22,V° ,$J° %!

1aj f
°

l l̃
~d!

~j22,V° ,$J° %!. ~5.13!

With Eq. ~4.32! the solution of the corresponding renorma
ization group equation forgq l̃

(d) is

g° q l̃
~d!

~j22,V° ,$J° %!5~k l !3Zq
21/2e~1/2!*1

l
~dx/x!zq

3ĝq l̃
~d!

„v~ l !,w~ l !,$J~ l !%…. ~5.14!

The amplitude function simply reads

ĝq l̃
~d!

„v~ l !,w~ l !,$J~ l !%…5 ic~ l !. ~5.15!

At finite frequencies no newe poles appear in the verte

functions, thus the renormalization ofG° qq(j
22,V° ,$J° %) is

the same as for the corresponding static vertex function
Eqs.~4.12! and ~4.14!. Therefore we have

G° qq~j22,V° ,$J° %!5Zq
21e*1

l
~dx/x!zqĜqq„v~ l !,w~ l !,$J~ l !%….

~5.16!

The amplitude function may be written as

Ĝqq„v~ l !,w~ l !,$J~ l !%…

5
aq

11@gq
2~ l !/aq#F1„v~ l !,w~ l !,$J~ l !%…

, ~5.17!

where the functionF1 contains the contributions of the loo
expansion. In one loop order thee-expanded amplitude func
tion is
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F1„v~ l !,w~ l !,$J~ l !%…

52
1

4H v2

v1v2
lnv1

1

v12v2
Fv2

2

v1
lnv22

v1
2

v2
lnv1G J .

~5.18!

The amplitude functionF1 reduces at vanishing frequenc
to the amplitude function of the staticf2-f2 correlation
function

lim
v→0

F1„v~ l !,w~ l !,$J~ l !%…5F1
~s!S j22~ t !

~k l !2
,u~ l !D .

~5.19!

This reflects the fact that the isochoric specific heat and
adiabatic compressibility have the same weak singularity.
serting Eqs.~5.14!–~5.17! into Eq. ~5.12! we get

Cs
2~ t,v!5

ajaq~k l !6c2~ l !

11@gq
2~ l !/aq#F1„v~ l !,w~ l !,$J~ l !%…

.

~5.20!
ar
e
-

The dynamic vertex functions in Eq.~5.13! are given by

f°q q̃
~d!

~ r°,V° ,$J° %!5~k l !2Zqe2*1
l
~dx/x!zql~ l !, ~5.21!

f° l l̃
~d!

~ r°,V° ,$J° %!5~k l !2l l~ l !$11El„v~ l !,w~ l !,$J~ l !%…%.
~5.22!

With Eqs. ~5.21! and ~5.22! the complex coefficient~5.13!
becomes

Ds~ t,v!5
aq~k l !2l~ l !

11@gq
2~ l !/aq#F1„v~ l !,w~ l !,$J~ l !%…

1aj~k l !2l l~ l !$11El„v~ l !,w~ l !,$J~ l !%…%,

~5.23!

where Eqs.~5.16! and~5.17! also have been used. The fun
tion El includes the contributions from perturbation expa
sion and reads in one loop order (e expanded!
El„v~ l !,w~ l !,$J~ l !%…52
f l

2

72H 116F iv2

w
lnv2

1

v12v2
S v2

2

v1
lnv22

v1
2

v2
lnv1D G2

v1
3 2v2

3

~v12v2!3
1

3

2

v1
3 lnv12v2

3 lnv2

~v12v2!3

2
9

2

v1
2 lnv12v2

2 lnv2

~v12v2!2
1

3

4

1

~v12v2!2F ivw

v12v2
1

v1
3

v2
~114lnv1!1

v2
3

v1
~114lnv2!2v2G

1
3

4

1

~v12v2!2F S 1

v2
2

2

v12v2
D v1

4 lnv12v4lnv

v2
1S 1

v1
1

2

v12v2
D v2

4 lnv22v4lnv

v1
G

1
3

4

v

~v12v2!2Fv1
2

v2
~113lnv1!1

v2
2

v1
~113lnv2!G14

v

~v12v2!2F S 1

v2
2

2

v12v2
D

3
v1

3 lnv12v3lnv

v2
1S 1

v1
1

2

v12v2
D v2

3 lnv22v3lnv

v1
G J . ~5.24!
sity

e-
ified.
this

the
The flow of the parametersl( l ), l l( l ), and c( l ) is deter-
mined by Eqs.~4.36!, ~4.38!, and~4.41! with the solutions

l~ l !5l l 22e*1
l
~dx/x!zq, l l~ l !5l l l

22e*1
l
~dx/x!zl l,

c~ l !5cl23e~1/2!*1
l
~dx/x!zq. ~5.25!

The sound velocity and the sound diffusion coefficient
determined by inserting Eqs.~5.20! and ~5.23! into Eq.
~3.20!. The sound attenuation is then defined by

a~ t,v!5
v2

2cs
3~ t,v!

Ds~ t,v!. ~5.26!
e

In the expressions obtained so far for the shear visco
@Eq. ~5.7!#, the sound velocity@Eq. ~5.20!#, and the diffusion
@Eq. ~5.23!# the relation among the flow parameter, the r
duced temperature, and the frequency needs to be spec
There are several conditions that restrict the choice of
relation. First the amplitude functions~5.5!, ~5.18!, and
~5.24! have to stay finite at the limitst→0 at fixedv and
also in the limitv→0 at fixedt. At last in the zero frequency
limit the relation has to reduce to the condition~4.15! used in
statics. At finite frequencies an appropriate choice for
matching condition is

US j22~ t !

2~k l !2D 2

1 iw~ l !U5
1

4
, ~5.27!
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where u•••u denotes the length in the complex plane. Th
choice is suggested by the appearance of the frequency
pendence in all our expressions through the square roo
Eq. ~5.6!. Taking the square of Eq.~5.27! and inserting the
definition ~5.3! of w( l ) the relation becomes

j28~ t !1S 2v

G~ l ! D
2

5~j0
21l !8. ~5.28!

For any fixed frequency Eq.~5.27! implicitly defines a flow
parameterl (t,v). In contrast to the zero frequency case t
critical limit j21(t)→0 at fixed frequency corresponds to
finite flow parameter valuel c(v), which is defined by the
equation

~j0
21l c!

85S 2v

G~ l c!
D 2

. ~5.29!

VI. CRITICAL BEHAVIOR AT ZERO FREQUENCY

A. Shear viscosity and thermal conductivity

In order to obtain the initial values of the dynamic mod
parametersG( l 0) and f t( l 0), appearing in the sound velocity
the attenuation, and the friction coefficient, experiments
the thermal conductivity and/or shear viscosity performed
v50 have to be fitted with our theoretical expressions. Fr
the definition of the thermal diffusion coefficien
DT5kT /(rCP) and Eq.~3.27! the thermal conductivity is
given by

kT~ t !5rCP~ t ! f°ff̃~j22,$J° %!. ~6.1!

Becausef°ff̃ in Eq. ~6.1! is a real function at zero frequenc
we have omitted the real part. With Eq.~3.30! we may write

kT~ t !5rCP~ t !G° ff
~s! ~j22,u° ! f°ff̃

~d!
~j22,$J° %!. ~6.2!

The solution of the renormalization group equation for t
dynamic order parameter vertex function inserted into
~4.30! reads

f°ff̃
~d!

~j22,$J° %!5Zfe2*1
l
~dx/x!zfG~ l !$11G„$J~ l !%…%,

~6.3!

where the functionG contains the contributions from th
perturbation expansion. The flow of the Onsager coeffici
G is determined by the corresponding flow equation~4.36!
from which the solution

G~ l !5Ge*1
l
~dx/x!~zf1zG

~d!
! ~6.4!

follows. Together with the static vertex function~4.17! the
thermal conductivity is

kT~ t !5rCP~ t !j22~ t !G~ t !Ĝff„u~ t !…@11G„$J~ t !%…#.
~6.5!

The flow parameterl has been replaced by the reduced te
perature at zero frequency using the relation~4.16!. The
shear viscosity~5.7! reduces at vanishing frequency to
de-
in

l

n
t

.

t

-

h̄ ~ t !5
1

RT
j22~ t !l t~ t !@11Et„$J~ t !%…#. ~6.6!

At vanishing frequency the amplitude functionse expanded
in one loop order are

G~$J%!52
f t

2

16
, Et~$J%!52

f t
2

36
. ~6.7!

Equations~6.5!–~6.7! will be used in the second part of thi
work to analyze experimental results of the thermal cond
tivity and the shear viscosity in several liquids@27#. In the
critical limit the specific heat and the correlation length b
have as

CP~ t !5A1t2g, j~ t !5j0t2n, ~6.8!

whereg and n are the critical exponents. The relation b
tween flow parameter and reduced temperature~4.16! is
given by l 5tn. In the asymptotic limit the flow of the On
sager coefficientsG andl t in Eqs.~6.4! and~5.9! reduces to
simple power laws:

G~ l !5G l zf
!

1zG
~d!!

, l t~ l !5l tl
221zl t

!
. ~6.9!

Introducing the notation of Siggia, Halperin, and Hohenbe

@1#, that is,xl[2zG
(d)!

andxh[2zl t

! and using Eq.~4.10!,

the asymptotic behavior of the Onsager coefficients is

G~ t !5Gt2n~h1xl!, l t~ t !5l tt
2n~21xh!. ~6.10!

Inserting Eqs.~6.8!–~6.10! into Eqs.~6.5! and ~6.6! we ob-
tain the asymptotic behavior of the thermal conductivity a
shear viscosity,

kT
~as!~ t !5kT

~c!t2nxl, h̄ ~as!~ t !5 h̄ ~c!t2nxh ~6.11!

with the amplitudes

kT
~c!5rA1j0

22GĜff
~s! ~u!!@11G~$J!%!#, ~6.12!

h̄ ~c!5
1

RT
j0

22l t@11Et~$J
!%!#. ~6.13!

In the asymptotic form~6.11! of the thermal conductivity the
critical exponent relationg5n(22h) has been used. Th
dynamicz functions are in one loop order

zG
~d!52

3

4
f t

2 , zl t
52

1

24
f t

2 . ~6.14!

From Eq. ~4.40! it follows that at the fixed point

zf
! 1zG

(d)!
1zl t

! 52e. With Eq. ~6.14! we get the one loop

fixed point f t
!5A24e/19. Inserting this value into Eq.~6.14!

the one loop values of the dynamic exponents are

xl5
18

19
e, xh5

e

19
. ~6.15!

At d53 (e51) the values arexl50.947 andxh50.053
where the latter is in good agreement with results obtai
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from the mode coupling theory@28# and the decoupled mod
theory for binary liquids at the consolute point@29# and for
pure liquids@30#.

B. Sound attenuation and sound velocity

From Eqs.~5.20! and ~5.23! one immediately sees to
gether with Eq.~5.19! that the complex functionsCs andDs
in the limit v→0 reduce to the real coefficients

Cs
2~ t !5

ajaqc°2Zq
21e*1

l
~dx/x!zq

11@gq
2~ l !/aq#F1

~s!
„u~ l !…

, ~6.16!

Ds~ t !5
aql° Zq

21e*1
l
~dx/x!zq

11@gq
2~ l !/aq#F1

~s!
„u~ l !…

1aj~k l !2l l~ l !

3$11El„$J~ l !%…%, ~6.17!

where we have used Eqs.~4.24!, ~4.29!, ~4.34!, and~5.25! for
the parametersl( l ), andc( l ). With Eqs.~2.14!, ~2.17! and
~4.18! from statics we may write

Zq
21e*1

l
~dx/x!zq5

1

aqRTrS ]P

]r D
s

S 11
gq

2~ l !

aq
F1

~s!
„u~ l !…D .

~6.18!

Eliminating the renormalization factors with~6.18! and in-

serting the definitions ofc° andaj from Eqs.~2.7! and~2.11!
we get

Cs
2~ t !5S ]P

]r D
s

, ~6.19!

Ds~ t !5
l°

RTrS ]P

]r D
s

1~k l !2l l~ l !@11El„$J~ l !%…#.

~6.20!

From Eq.~6.19! one can see thatCs is expressed by the sam
thermodynamic derivative as the hydrodynamic sound ve
ity ~3.8!. The difference is that the thermodynamic derivati
in Eqs. ~6.19! and ~6.20! now contains the critical singular
ity. In the asymptotic region we may write

S ]r

]PD
s

5B1t2a ~6.21!

and therefore the sound velocitycs
(as)5Cs5B1

21/2ta/2 van-
ishes with the critical exponenta/2. The one loop amplitude
function ~5.24! reduces atv50 to

El~$J%!52
f l

2

48
. ~6.22!

With Eqs. ~5.25! and ~6.21! the critical behavior of Eq.
~6.20! is

Ds~ t !5
l° B1

RTr
ta1l l@11El~$J

!%!#t2nxl. ~6.23!
c-

The first term vanishes forT→Tc , the second term diverge
like t2nxl wherexl is defined asxl[2zl l

! analogous to the

transverse mode. In one loop order thez function reads

zl l
52

f l
2

12
. ~6.24!

The momentum densityz functions fulfill the fixed point
relation~4.43! from which it follows that the dynamic expo
nent of the second part in Eq.~6.23! xl5xh is the same as for
the shear viscosity. Thus Eq.~6.23! may be given as an
asymptotic power law

Ds
~as!~ t !5D2

~c!t2nxh, D2
~c!5l l@11El~$J

!%!#.
~6.25!

Inserting Eq.~5.25! and the unrenormalized parameters~2.8!
and ~2.9! into Eq. ~6.20! and using the thermodynamic rela
tion

S ]r

]s D
P

2 S ]P

]r D
s

5r2TS 1

CV
2

1

CP
D ,

the coefficientDs at vanishing frequency can be written a

Ds~ t !5
kT

~0!

r S 1

CV~ t !
2

1

CP~ t ! D
1

z~0!1 4
3 h̄ ~0!

r
Zl l

21e*1
l ~ t !

~dx/x!zl l@11El„$J~ t !%…#.

~6.26!

The above sound diffusion coefficient looks like the hydr
dynamic expression in Eq.~3.8! separating into a part cause
by the finite thermal conductivity and a part caused by
finite shear and bulk viscosity. In the asymptotic limit co
tributions due to critical fluctuations appear that are d
scribed by the two critical specific heats in the first term
Eq. ~6.26! and the exponential factor in the second term. W
want to emphasize that in Eq.~6.26! the thermal conductiv-
ity, the shear viscosity, and the bulk viscosity only enter
their background values. It would be erroneous to take
hydrodynamic expression in Eq.~3.8! and simply insert the
asymptotic power laws for all appearing transport coe
cients and thermodynamic derivatives.

To get the sound diffusion coefficientDs at vanishing
frequency we have to insert Eqs.~5.20! and ~5.23! into Eq.
~3.20! and take the limitv→0. The result is

Ds~ t !52 lim
v→0

Im@Cs
22 ivDs#

v

5
gq

2~ l !

2aqG~ l !~k l !4S ]P

]r D
s

F18 „$J~ l !%…

11@gq
2~ l !/aq#F1

~s!
„u~ l !…

1Ds~ t ! ~6.27!

with the flow parameterl 5 l (t) from Eq. ~4.16! and
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F18 „$J~ l !%…5 lim
v→0

]F1„v~ l !,w~ l !,$J~ l !%…

]w~ l !
. ~6.28!

Inserting the matching condition~4.16! and the asymptotic
power laws~6.10! for the Onsager coefficient and~6.25! for
Ds(t), the sound diffusion coefficient can be written as

Ds~ t !5D1
~c!t2zn1a1D2

~c!t2nxh, ~6.29!

where we have introduced the exponent

z542h2xl ~6.30!

and the amplitude

D1
~c!5

gq
!2

j0
4

2aqGB1

Re@F18 ~$J!%!#

11@gq
!2

/aq#F1
~s!~u!!

. ~6.31!

In Eq. ~6.30! the exponent of the critical thermal conducti
ity xl enters. With the relationxl1xh5e2h @1# between
the dynamic exponents,z may be expressed by the expone
of the critical shear viscosity

z542e1xh . ~6.32!

The first term in Eq.~6.29! contains the leading strong sin
gularity with z53.053 in one loop order. The second ter
diverges only weakly with the exponent of the shear visc
ity. From Eqs. ~5.26! and ~6.21! one can see that th
asymptotic behavior of the sound attenuation at small
quencies is

a~as!~ t,v!5a~c!v2t2~zn1a/2!, ~6.33!

which is in agreement with results obtained in@2,3#.

VII. CRITICAL BEHAVIOR AT Tc

AND SCALING FUNCTION

A. Viscosity and sound atTc

At the critical temperatureTc the flow parameter is
uniquely related to the frequency by Eq.~5.29!. At small
frequencies in the asymptotic region the Onsager coeffic
G behaves asG( l c)5G l c

2(xl1h)
5G l c

z24 according to Eq.
~6.9!. We used the definition of the dynamical exponentz by
Eq. ~6.30!. Replacingl by its solution of the matching con
dition Eq. ~5.29!

l c5~bv!1/z, b5
2j0

4

G
, ~7.1!

the complex shear viscosity~5.7! for frequencies in the
asymptotic region of reads

h̄ ~0,v!5
l t

j0
2RT

@11Et~$J
!%!# l c

2xh . ~7.2!

Note that Eq.~5.29! may be rewritten asw( l c)5 1
4 by insert-

ing the definition~5.3!. The amplitude functionEt($J
!%) at

t50 is the complex function
t

-

-

nt

Et~$J
!%!5

f t
!2

288F116ln21 i
3p

2 G . ~7.3!

With Eq. ~7.1! the frequency dependence of the shear visc
ity at the critical point is

h̄ ~0,v!5 h̄ ~v!v2xh /z. ~7.4!

This result for the asymptotic shear viscosity is in agreem
with the result of the decoupled mode theory of Bhattach
jee and Ferrell@30#.

The complex functions Eqs.~5.20! and ~5.23! appearing
in the sound mode turn in the asymptotic frequency region

Cs
2~0,v!5

ajaqc2j0
26

11~gq
2!

/aq!F1~$J!%!
l c
a/n , ~7.5!

Ds~0,v!5
aqj0

22l

11~gq
2!

/aq!F1~$J!%!
l c
a/n

1ajj0
22l l@11El~$J

!%!# l c
2xh , ~7.6!

where the asymptotic power laws for the static and dyna
parameters c( l c)5clc

231a/n , l( l c)5l l c
221a/n , and

l l( l c)5l l l c
2(21xh) follow from Eqs. ~4.10! and ~5.25!. The

amplitude functionF1($J!%) at t50 reads

F1~$J!%!5
1

4F ln21 i
p

4 G . ~7.7!

From Eqs.~3.20! and ~7.1! we get for the sound velocity

cs
2~0,v!5c1

2va/nz1c2
2v11a/nz1c3

2v12xh /z. ~7.8!

At small frequencies the first term in Eq.~7.8! is the leading
one due to the small positive exponent. Further, the am
tudesc2 andc3 are small compared to the amplitude of th
first term. Thus the sound velocity at the critical point has
form

cs~0,v!;c1va/2nz. ~7.9!

Analogous to Eq.~7.8! for the asymptotic behavior at sma
frequencies of the sound diffusion follows

Ds~0,v!5D1v211a/nz1D2va/nz1D3v2xh /z.
~7.10!

In the limit v→0 the first term in Eq.~7.6! shows a strong
divergence while the last term has a weak divergence.
asymptotic small frequencies the sound diffusion coeffici
is described by the single power law

Ds~0,v!;D1v211a/nz. ~7.11!

Inserting the power laws~7.9! and ~7.11! into the definition
of the sound attenuation~5.26! we get finally

a~0,v!5a~v!v12a/2nz ~7.12!

in agreement with@5#.
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B. Scaling functions for the viscosity and sound

The connection between flow parameter and reduced t
perature~5.28! offers the possibility to define a scaling var
able. Inserting the asymptotic relationsj(t)5j0t2n,
G( l )5G l z24 and defining the variable

y5
v

2Gj0
24tnz

. ~7.13!

The matching condition Eq.~5.28! may be written after some
rearrangement

~ t2nl !851116y2~ t2nl !2~42z!. ~7.14!

This form of the equation holds for all liquids because
parameters that characterize a special liquid are absorbe
y. Equation~7.14! also shows that the productt2nl is a func-
tion S(y)5t2nl of y alone, whereS is determined implicitly
by solving Eq.~7.14!. The flow parameter may be written a

l 5tnS~y!. ~7.15!

At zero frequency (v50) the solution of the matching con
dition ~7.14! is equal to the asymptotic form of Eq.~4.15!,
thusS(0)51. For largey one may neglect the 1 on the righ
hand side of Eq.~7.14! and we obtainS(y)5(4y)1/z repro-
ducing the power laws in frequency atTc . Inserting Eqs.
~7.13! and ~7.15! into the definition~5.3!, the parametersv
andw may be expressed entirely byy via

v~ l !5@S~y!#22, w~ l !5y@S~y!#2z. ~7.16!

Inserting this into the amplitude functionsF1 , El , andEt
they become complex functions ofy only. We introduce the
function

F1„v~ l !,w~ l !,$J!%…5F1„@S~y!#22,y@S~y!#2z,$J!%…

[F̂1~y! ~7.17!

and Êt(y) and Êl(y) accordingly. We then define the com
plex scaling function for the shear viscosity by extracting
asymptotic form~6.11!
-

l
in

e

h̄ ~ t,v!5 h̄ ~as!~ t !Yh~y!, ~7.18!

where the scaling functionYh(y) is normalized to 1 aty50.
From Eq.~5.7! we have

Yh~y!5S~y!2xh
11Êt~y!

11Et~$J
!%!

. ~7.19!

This expression might be compared with the result of@9#.
Following the manipulations in that paper, which make u
of the smallness ofxh , we identify the impedance function
~sum of the real and imaginary parts of the shear viscos!
as

H5 ln~B`y!2zln@S~y!#1
z

xh
$Re@Êt~y!#2Re@Et~$J

!%!#

1Im@Êt~y!#%. ~7.20!

The first term comes from the division by the largey behav-
ior, which cancels the ln(y) terms of the following terms. A
more detailed comparison will be given in the third part
this work.

Let us turn to the sound velocity and attenuation. T
complex coefficient~5.20! and~5.23! can be written with Eq.
~7.16! as

Cs
2~ t,v!5ajaqc2j0

26 ta@S~y!#a/n

11~gq
2!

/aq!F̂1~y!
, ~7.21!

Ds~ t,v!5aqj0
22l

taSa/n~y!

11~gq
2!

/aq!F̂1~y!
1ajj0

22l l

3@11Êl~y!#t2nxh@S~y!#2xh. ~7.22!

From the real and imaginary parts of Eqs.~7.21! and ~7.22!
one may calculate the squared sound velocity and the so
diffusion coefficient defined in Eq.~3.20!. We note that the
imaginary part ofF1 is proportional to the frequency. Thu
we have
ad
Im@F1„v~ l !,w~ l !,$J!%…#5w~ l !Im@ F̄1„v~ l !,w~ l !,$J!%…#5y@S~y!#2zIm@ F̂̄1~y!# ~7.23!

with a finite function Im@ F̂̄1(y)# at y50. In the vicinity of the fixed point the sound velocity and diffusion coefficient re

cs
2~ t,v!5ajaqc2j0

26
11~gq

2!
/aq!Re@ F̂1~y!#

u11~gq
2!

/aq!F̂1~y!u2
ta@S~y!#a/n12aqGlj0

26
~gq

2!
/aq!Im@ F̂̄1~y!#

u11~gq
2!

/aq!F̂1~y!u2
ta1nzy2@S~y!#2z1a/n

12ajGl lj0
26Im@Êl~y!#tn~z2xh!y@S~y!#2xh, ~7.24!

Ds~ t,v!52
ajaqc2j0

22~gq
2!

/aq!Im@ F̂̄1~y!#

2Gu11gq
2!

/aq)F̂1~y!u2
t2nz1a@S~y!#2z1a/n1aqlj0

22
11~gq

2!
/aq!Re@ F̂1~y!#

u11~gq
2!

/aq!F̂1~y!u2
ta@S~y!#a/n

1ajl lj0
22$11Re@Êl~y!#%t2nxh@S~y!#2xh. ~7.25!
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Taking only the leading terms of the asymptotic behavior and extracting the asymptotic behavior at zero frequency the
function for the sound velocity is defined by

cs~ t,v!5cs
~as!~ t !Yc~y! ~7.26!

with

Yc~y!5S~y!a/2nS 11~gq
2!

/aq!Re@ F̂1~y!#

11~gq
2!

/aq!F1
~s!~u!!

D 1/2
11~gq

2!
/aq!F1

~s!~u!!

u11~gq
2!

/aq!F̂1~y!u
. ~7.27!

The scaling function for the sound attenuation reads accordingly

a~ t,v!5a~as!~ t !Ya~y! ~7.28!

with

Ya~y!5S~y!2z2a/2n
Im@ F̂̄1~y!#

F18 ~$J!%!
S 11~gq

2!
/aq!F1

~s!~u!!

11~gq
2!

/aq!Re@ F̂1~y!#
D 3/2

u11~gq
2!

/aq!F̂1~y!u

11~gq
2!

/aq!F1
~s!~u!!

, ~7.29!
d-
cy
tio
p
o
dy
e
g

on
e
no
a
h
on

th

er
in

ng
e
f
a

l

d
g
mic

x-

con-

is
where we have taken out the asymptotic power law~6.33! at
small frequencies.

VIII. OUTLOOK

We have calculated within a nonasymptotic fiel
theoretical renormalization group theory the frequen
dependent viscosity sound velocity and sound attenua
near the gas-liquid critical point in pure fluids in one loo
order. These measurable quantities are determined c
pletely by model H dynamical parameters and thermo
namic derivatives. Taking the initial values for the corr
sponding flow equations for the order parameter Onsa
coefficient G( l 0), the mode couplingf t( l 0), and the static
couplinggq( l ) from experiment a parameter-free predicti
of the complete frequency and temperature dependenc
the sound mode and the shear viscosity is possible. The
asymptotic behavior of the dynamical parameters has alre
been demonstrated@4,31# and satisfactory agreement wit
experiment has been reached. In the asymptotic limit
introduces a scaled frequency~depending onG( l 0) and de-
fines scaling functions for the asymptotic crossover in
frequencyv and temperaturet from the t axis to thev axis
in the v-t plane. This allows one to compare with earli
asymptotic calculations@5,8,9#. These topics are described
more detail in Ref.@27#.

APPENDIX A: STATIC FUNCTIONAL

Recently a detailed derivation of a functional describi
static critical phenomena in liquid mixtures has been giv
@10#. Therefore we will sketch only briefly the derivation o
a static functional for pure liquids. The starting point is
local equilibrium distribution function:

wloc5
1

Ne2*VddxV~x!/kBT~x! ~A1!
-
n

m-
-

-
er

of
n-
dy

e

e

n

with temperatureT(x), chemical potentialm(x), and veloc-
ity v(x) as external fields.V(x) is the corresponding loca
thermodynamic potential

V~x!5e~x!1ek~x!2T~x!s~x!2m~x!r~x!2v~x!j8~x!
~A2!

in which e(x) is the internal energy density an
ek(x)5 j8(x)2/2r(x) is the kinetic energy density. Assumin
that the densities are fluctuating about their thermodyna
average values, we can write

e~x!5e1De~x!, ek~x!5ek1Dek~x!,

s~x!5s1Ds~x!, r~x!5r1Dr~x!, ~A3!

j8~x!5 j81D j8~x!.

Additionally we allow small variations of the conjugated e
ternal fields:

T~x!5T1dT~x!, m~x!5m1dm~x!,
~A4!

v~x!5v1dv~x!.

Inserting Eqs.~A3! and~A4! into Eq.~A2! the local thermo-
dynamic potential can be split into three parts

V~x!

kBT
5

V~0!

kBT
1H~x!2dH~x!. ~A5!

The first part represents the thermodynamic average and
tains the Gibb’s free energyV (0)5e1ek2Ts2mr2v• j8.
The second part involves the fluctuation contributions and
given by

H~x!5
1

kBT
@De~x!1Dek~x!2TDs~x!2mDr~x!

2v•D j8~x!#. ~A6!



x

ns

y-

a
lo

n

py
s
m

m

en
re

en
se

ratic
l-

iant
onal
a
ry

ap-

ro-

al
o-
ime
jec-
ly

mic

-

re-

n

700 57R. FOLK AND G. MOSER
The third part is the first order contributions due to the e
ternal field variation:

dH~x!5
e~x!1ek~x!2mr~x!2v• j8~x!

kBT

dT~x!

T

1
r~x!dm~x!

kBT
1

j8~x!•dv~x!

kBT
. ~A7!

Inserting Eq.~A5! into the local distribution function~A1!
and expanding in first order of the external field variatio
we get, analogous to@32,33# for the correlation functions,

^ss&c5kBTS ]s

]TD
m

, ^rr&c5kBTS ]r

]m D
T

, ~A8!

^sr&c5kBTS ]r

]TD
m

5kBTS ]s

]m D
T

. ~A9!

From Eqs.~A8! and ~A9! one can see that the thermod
namic derivatives involve the chemical potentialm. Experi-
mentally the pressureP is accessible and therefore for
comparison with experimentally measured quantities the
cal thermodynamic potential~A5! has to be expressed i
densities, that correspond to external fieldsT and P instead
of T andm. This can be obtained by changing from entro
density per volumes(x) to entropy density per mas
s(x)5s(x)/r(x). The corresponding fluctuations transfor
like

Ds~x!5rDs~x!1sDr~x!. ~A10!

The correlation functions~A8! and ~A9! change to

^ss&c5
kBT

r S ]s

]TD
P

, ^rr&c5rkBTS ]r

]PD
T

, ~A11!

^sr&c5
kBT

r S ]r

]TD
P

5rkBTS ]s

]PD
T

. ~A12!

Expanding the Hamiltonian~A6! in powers of the fluctua-
tions of the entropy per mass, the mass density and the
mentum density we get

H5E ddxH 1

2
ass@Ds~x!#21

1

2
css@“Ds~x!#2

1
1

2
arr@Dr~x!#21asrDs~x!Dr~x!1

1

2
aj8@D j8~x!#2

1
1

3!
vs@Ds~x!#31

1

4!
us@Ds~x!#41

1

2
grDr~x!

3@Ds~x!#2J . ~A13!

For dynamic calculations it is convenient to choose the
tropy density fluctuations as the order parameter. With
gard to this we have expanded in Eq.~A13! the entropy
density fluctuations up to fourth order, while the mass d
sity and momentum density fluctuations, considered as
-

,

-

o-

-
-

-
c-

ondary densities, only need to be expanded up to quad
order, taking into account in the Hamiltonian all terms re
evant for the critical theory. The Gaussian part of Eq.~A13!
is nondiagonal and contains terms that are not invar
against order parameter inversion. These terms proporti
to DrDs and (Ds)3 can be removed by introducing
shifted order parameterf0(x) and a transformed seconda
densityq0(x) such as

f0~x!5ANA@Ds~x!2^Ds~x!&#, ~A14!

q0~x!5ANAFDr~x!2S ]r

]s D
P

@Ds~x!2^Ds~x!&#G .

~A15!

NA has been introduced for convenience to obtain the
pearance of the gas constantR instead of the Boltzmann
constantkB in the equations and parameter definitions. Int
ducing a rescaled momentum densityj5 j l1 jt5ANAD j8, one
ends up with Eq.~2.10!.

APPENDIX B: DYNAMIC EQUATIONS

Due to the critical slowing down the dynamics of critic
phenomena is explicitly influenced mainly by slow pr
cesses. The influence of variables that vary on short t
scales may be considered stochastically. Thus only pro
tions of the dynamic variables into a subspace of slow
varying variables need to be considered@34,35#. Let c i(x,t)
be a set of slow variables, then the corresponding dyna
equations can be written as@36–38#

dc i~x,t !

dt
5Vi$c~x,t !%2(

j
L i j ~x!

dH$c~x,t !%

dc j~x,t !
1Q i~x,t !.

~B1!

Q i(x,t) are fluctuating forces that fulfill the Einstein rela
tions

^Q i~x,t !Q j~x8,t8!&52L i j ~x!d~ t2t8!d~x2x8! ~B2!

when Markovian processes are assumed.L i j (x) are the ki-
netic coefficients, which are constantsL i j (x)5L i j in the
case of nonconserved densitiesc(x,t) and are given by
L i j (x)52L i j ¹

2 in the case of conserved densities. The
versible contributionsVi$c(x,t)% of the dynamic equations
can be written as

Vi$c~x,t !%5(
j
E dx8dt8FdQi j ~x,t;x8,t8!

dc j~x8,t8!

2Qi j ~x,t;x8,t8!
dH$c~x,t !%

dc j~x8,t8!
G . ~B3!

The quantitiesQi j (x,t;x8,t8) are related to the Poisso
brackets of the densities,

Qi j ~x,t;x8,t8!5kBT$c i~x,t !,c j~x8,t8!%. ~B4!

For simple liquids the slowly varying densitiesc i(x) corre-
spond to the volume densitiess(x), r(x), andj8(x). Gener-
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alized Poisson brackets for hydrodynamic densities may
derived from infinitesimal displacements@39#. The resulting
Poisson brackets are

$ j8~x,t !,s~x8,t8!%5s~x,t !“d~x2x8!d~ t2t8!,

$ j8~x,t !,r~x8,t8!%5r~x,t !“d~x2x8!d~ t2t8!, ~B5!

$ j k8~x,t !, j l8~x8,t8!%5@ j l8~x,t !¹kd~x2x8!

2 j k8~x8,t8!¹ ld~x2x8!#d~ t2t8!.

All other Poisson brackets are zero. The reversible te
~B3! of the dynamic equations turn with~B5! to ~we omit the
explicit indication of space and time dependence in the
lowing!

Vs52kBT“•S s
dH

d j8
D , ~B6!

Vr52kBT“•S r
dH

d j8
D , ~B7!

Vj52kBTFs“

dH

ds
1r“

dH

dr G2kBT(
k

F j k8“
dH

d j k8

2¹kj8
dH

d j k8
G . ~B8!

The matrixL i j is determined by the dissipation processes
hydrodynamics. For a liquid at rest (v50) the hydrody-
namic equation for the entropy density reads@16#

T
]s

]t
52“•q, q52kT

~0!
“T ~B9!

in which kT
(0) is the thermal conductivity in the backgroun

Expanding the functionalH in Eq. ~A6! in powers of the
fluctuationsDs(x), Dr(x) andD j8(x), a comparison of the
coefficients in quadratic order with thermodynamic relatio
show that we can write¹2T5kBTdH/ds. Thus the hydro-
dynamic equation~B9! can be written as

]s

]t
5kBkT

~0!¹2
dH

ds
. ~B10!

From the above equation it follows that in the dynamic eq
tion ~B1! for the entropy density the only nonvanishing k
netic coefficient isLss52kBkT

(0)¹2. With Eq. ~B6! we get

]s

]t
5kBkT

~0!¹2
dH

ds
2kBT“•S s

dH

d j8
D 1Qs ~B11!

for the nonlinear entropy density equation. Due to mass c
servation no dissipative contributions appear in the dyna
equation for the mass density. With Eq.~B7! we simply get
e

s

l-

n

s

-

n-
ic

]r

]t
52kBT“•S r

dH

d j8
D . ~B12!

The conservation of mass is an exact relation, therefore
~B12! contains no stochastic force. Linearizing the hydrod
namic equation for the momentum density in the veloci
the equation reads@16#

] j8
]t

5S z~0!1
h̄ ~0!

3
D“~“•v !1 h̄ ~0!¹2v ~B13!

z (0) andh̄ (0) are the bulk viscosity and the shear viscosity
the noncritical background. Equation~B13! may be sepa-
rated into an equation for the longitudinal and transve
parts of the momentum density according toj85 j8 l1 j8t with
“3 j8 l50 and“• j8t50:

] j8 l

]t
5S z~0!1

4

3
h̄ ~0!D¹2vl ,

] j8t

]t
5 h̄ ~0!¹2vt . ~B14!

From the kinetic energy in the static functional~A6! it fol-
lows that the longitudinal and transverse velocity in E
~B14! can be written asvi5kBTdH/d j8 i ( i 5 l ,t). With the
reversible term~B8! we get for the nonlinear dynamic equa
tion

] j8
]t

5kBTS z~0!1
4

3
h̄ ~0!D¹2

dH

d j8 l

1kBTh̄ ~0!¹2
dH

d j8t

2kBTFs“

dH

ds
1r“

dH

dr G2kBT(
k

F j k8“
dH

d j k8

2¹kj8
dH

d j k8
G1Qj 8. ~B15!

Changing from entropy per volume to entropy per ma
s(x)5s(x)/r(x), analogous to statics, Eq.~B11! turns into

]s

]t
5

kBkT
~0!

r2
¹2

dH

ds
2kBT~“s!•

dH

d j8
1Qs . ~B16!

From Eq.~B15! we get the corresponding equation for th
momentum density:

] j8
]t

5kBTS z~0!1
4

3
h̄ ~0!D¹2

dH

d j8 l

1kBTh̄ ~0!¹2
dH

d j8t

2kBTFr“

dH

dr
2~¹s!

dH

ds G2kBT(
k

F j k8“
dH

d j k8

2¹kj8
dH

d j k8
G1Qj 8. ~B17!

The equation for the mass density~B12! remains unchanged
Equations~B12!, ~B16!, and~B17! constitute a set of nonlin-
ear equations that describe the dynamics of fluctuation
liquids. Equations~2.1!–~2.4! are obtained by introducing



a

in
m

es

702 57R. FOLK AND G. MOSER
the fields f0 and q0 from Eqs. ~A14! and ~A15! and by
splitting the momentum density equation into a longitudin
and a transverse part.

APPENDIX C: DYNAMIC FUNCTIONAL

In order to calculate the dynamic correlation functions
a perturbation expansion we need a generating dyna
functional. Considering the dynamic equations~B16! and
l

ic

~B17!, we write the equations that contain stochastic forc
in a short notation

] taW 5VW 1QW with aW 5S s

j l8

jt8
D , QW 5S Qs

Ql8

Qt8
D . ~C1!

The vectorVW contains the rest of Eqs.~B16! and~B17!. The
fluctuating forcesQW fulfill Einstein relations analogous to
~2.5! but with a coefficient matrix
that Eq.

ds
L85S 2~kBkT
~0!/r2!¹2 0 0

0 2kBTS z~0!1
4

3
h̄ ~0!D¹2 0

0 0 2kBTh̄ ~0!¹2

D . ~C2!

Additionally we have the exact continuity equation~B12! in the short form

] tr5Vr , ~C3!

which may be considered as a constraint for the generating functional. The stochastic forces fluctuate in such a way
~C3! is always fulfilled. Thus the generating functional can be written as

Zd5E D~QW !D~F !d~F !expF2
1

4E dtdxQW TL821QW G , ~C4!

whereF5] tr2Vr . D refers to a suitable integration measure. Inserting Eq.~C1! and changing the integration variables lea
to

Zd5E D~aW ,r!d~] tr2Vr!expF2
1

4E dtE dxS @] taW 2VW #TL821@] taW 2VW #12(
i

dVi

da i
12

dVr

dr D G . ~C5!

The d function may be expressed by an exponential function

d~] tr2Vr!5E D~ i r̃ !expF2E dxE dt r̃ ~] tr2Vr!G . ~C6!

Introducing auxiliary fieldsiaW and performing a Gaussian transformation~C5! turns into

Zd5E D~aW ,r,i ãW ,i r̃ !e2J ~C7!

with

J5E dtE dxS 2ãW TL8ãW 1ãW T~] taW 2VW !1 r̃ ~] tr2Vr!1
1

2(i

dVi

da i
1

1

2

dVr

dr D . ~C8!

Introducing the order parameter~A14! and the secondary density~A15! in Eq. ~C8! the dynamic functional reads

J5E dtE dxS 2b̃W TLb̃W 1b̃W T~] tbW 2VW !1
1

2(i

dVi

db i
D , ~C9!

where the densities arebW T5(f0 ,q0 ,j l ,jt) and L is the coefficient matrix~2.6!. The conjugated densitiesb̃W are defined
accordingly. An explicit expression for~C9! is obtained by inserting the dynamic equations~2.1!–~2.4!. The Fourier trans-
formed Gaussian part can be written as
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J~0!5
1

2Ek,v
@bW T~k,v!,b̃W T~k,v!#G~0!~k,v!S bW ~2k,2v!

b̃W ~2k,2v!
D . ~C10!
ex

th

he
n

x-

.
e

r

The integration is defined as*k,v5*@ddk/(2p)d#*dv/2p.
The elements of the matrixG(0)(k,v) are the dynamic vertex
functions in lowest order perturbation theory. They are
plicitly given by

G~0!~k,v!5S 0 2 iv11L~k!

iv11L†~k! 22l~k!
D , ~C11!

where 1 denotes the unit matrix and the superscript †
adjoint matrix. In the present case the submatrices are

L~k!5S G° k2~t°1k2! L° fk2~t°1k2! 2 ikg° lh
°

q
0

aqL° fk2 aql° k2 ikaqc° 0

0 ikajc° ajl° lk
2 0

0 0 0 ajl° tk
2

D ,

~C12!

l~k!5S G° k2 L° fk2 0 0

L° fk2 l° k2 0 0

0 0 l° lk
2 0

0 0 0 l° tk
2

D . ~C13!

The interaction terms in the Hamiltonian~2.10! and the
mode coupling terms in the dynamic equation modify t
matrix ~C11! and may be calculated in a perturbation expa
sion. The dynamic two-point vertex function is given by

G~k,v!5G~0!~k,v!2S~k,v!, ~C14!

whereS(k,v) contains 1-irreducible diagrams with two e
ternal legs. The matrixG(k,v) of the vertex functions has
the structure

G~k,v!5S @0# @Ga,b̃#~k,v!

@Gã ,b#~k,v! @Gã ,b̃#~k,v!
D , ~C15!

with the submatrix

@Gab̃#5S G° ff̃ G° f q̃ G° f l̃ 0

G° qf̃ G° q q̃ G° q l̃ 0

G° l f̃ G° l q̃ G° q l̃ 0

0 0 0 G° t t̃

D . ~C16!

The submatrices@Gã ,b# and@Gã ,b̃# are defined accordingly
Then the propagators of the model are determined by inv

ing Eq. ~C11!. In the limit c°→` the propagators of orde

(c°)0 are identical to the known model H propagators@1#.
One gets the response propagators
-

e

-

rt-

^f0~k,v!f̃0~2k,2v!&05
1

2 iv1G° k2~t°1k2!
,

~C17!

^ jt~k,v! ^ j t̃~2k,2v!&05
1

2 iv1ajl° tk
2

1, ~C18!

and the correlation propagators

^f0~k,v!f0~2k,2v!&05
2G° k2

u2 iv1G° k2~t°1k2!u2
,

~C19!

^ jt~k,v! ^ jt~2k,2v!&05
2l° tk

2

u2 iv1ajl° tk
2u2

1. ~C20!

In the extended model additional propagators of order (c°)21

arise, which contribute in the limitc°→` with vertices of

orderc° to the vertex functions, they read

^f0~k,v! j̃ l~2k,2v!&052
L° fk

ic°@2 iv1G° k2~t°1k2!#
,

~C21!

^ j l~k,v!f̃0~2k,2v!&052
L° f~t°1k2!k

ia jc°@2 iv1G° k2~t°1k2!#
,

~C22!

^q0~k,v!f̃~2k,2v!&052
g° lh

°
q

iaqc°@2 iv1G° k2~t°1k2!#
,

~C23!

^q0~k,v! j̃ l~2k,2v!&05
k

iaqc°k2
, ~C24!

^ j l~k,v! q̃0~2k,2v!&05
k

ia jc°k2
, ~C25!

^f0~k,v!q0~2k,2v!&05
2G° k2g° lh

°
q

aqc° u2 iv1G° k2~t°1k2!u2
,

~C26!

^f0~k,v!j l~2k,2v!&052
2L° fkv

ajc° u2 iv1G° k2~t°1k2!u2
.

~C27!
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